MOLE CALCULATIONS 1 MARK SCHEME

Science Exams Sorted

1. What mass of oxygen reacts with 12g of magnesium?

$$2\text{Mg} + \text{O}_2 \quad \rightarrow \quad 2\text{MgO}$$

Step 1	
24g = 1 mol	
$1g = \frac{1}{24} \text{ mol}$	
$12g = \frac{1}{24} \times 12$	
$12g = \frac{1}{2} \text{ mol}$	(1)
Step 2	
Ratio = 2:1	
So, we must halve the number of moles. $\frac{1}{2} \times 0.5 = \frac{1}{4}$	
Step 3	
Mass = mol x Mr	
$Mass = \frac{1}{4} \times 32$	
Mass = 8g	(1)
	Total: 2 marks

2. What mass of calcium hydroxide is made from 14kg of calcium oxide?

$$CaO + H_2O \rightarrow Ca(OH)_2$$

Step 1	
56g = 1 mol	
$1g = \frac{1}{56} \text{ mol}$	
$14g = \frac{1}{56} \times 14$ $14g = \frac{1}{4} \text{ mol}$	(1)
Step 2	
Ratio = 1:1	
Step 3	
Mass = mol x Mr	
$Mass = \frac{1}{4} \times 74$	
Mass = 18.5 kg or 18500g	(1)
	Total: 2 marks

3. What mass of aluminium is needed to react with 640g of iron oxide?

$$Fe_2O_3 + 2AI \rightarrow 2Fe + Al_2O_3$$

Step 1	
160g = 1 mol	
$1g = \frac{1}{160} \text{ mol}$	
$640g = \frac{1}{160} \times 640$	
640g = 4 mols	(1)
Step 2	
Ratio = 1:2	
So, we must multiply the number of moles by 2.	
$4 \times 2 = 8$	
Step 3	
Mass = mol x Mr	
Mass = 8 x 27	(1)
	Total: 2 marks

4. What mass of titanium chloride reacts with 460g of sodium?

$$TiCl_4 + 4Na \rightarrow Ti + 4NaCl$$

Step 1	
23g = 1 mol	
$1g = \frac{1}{23} \text{ mol}$	
$460g = \frac{1}{23} \times 460 \qquad 460g = 20 \text{ mols}$	(1)
Step 2	
Ratio = 1:4	
So, we must divide the number of moles by 4.	
20 ÷ 4 = 5	
Step 3	
Mass = mol x Mr	
Mass = 5 x 190	(1)
	Total: 2 marks

5. Calculate the mass of aluminium that can be formed from 1020g of aluminium oxide.

$$2AI_2O_3 \quad \rightarrow \quad 4AI \,+\, 3O_2$$

Step 1	
102g = 1 mol	
$1g = \frac{1}{102} \text{ mol}$	
$1020g = \frac{1}{102} \times 1020$	(1)
1020g = 10 mols	
Step 2	
Ratio = 2:4	
So, we must double the number of moles.	
10 x 2 = 20 mols	
Step 3	
Mass = mol x Mr	
Mass = 20 x 27	(1)
	Total: 2 marks

6. Calculate the mass of oxygen needed to react 10.0g of calcium to form calcium oxide.

$$2Ca + O_2 \quad \rightarrow \quad 2CaO$$

Step 1	
40g = 1 mol	
$1g = \frac{1}{40} \text{ mol}$	
$10g = \frac{1}{40} \times 10$	
10g = 0.25 mols	(1)
Step 2	
Ratio = 2:1	
So, we must halve the number of moles. $0.25 \div 2 = 0.125$	
Step 3	
Mass = mol x Mr	
Mass = 0.125 x 32	
Mass = 4g	(1)
	Total: 2 marks

7. What mass of propane could burn in 48.0g of oxygen?

$$C_3H_8 \ + \ 5O_2 \quad \rightarrow \quad 3CO_2 \ + \ 4H_2O$$

Step 1	
32g = 1 mol	
$1g = \frac{1}{32} \text{ mol}$	
$48g = \frac{1}{32} \times 48$	
48g = 1.5 mols	(1)
Step 2	
Ratio = 5:1	
So, we must divide the number of moles by 5.	
$1.5 \div 5 = 0.3 \text{mol}$	
Step 3	
Mass = mol x Mr	
Mass = 0.3 x 44	
	(1)
	Total: 2 marks

8. What mass of ammonia can be made from 20.0g of hydrogen?

$$3H_2 + \ N_2 \quad \rightarrow \quad 2NH_3$$

Step 1	
2g = 1 mol	
$1g = \frac{1}{2} \text{ mol}$	
$20g = \frac{1}{2} \times 20$ $20g = 10 \text{ mols}$	(1)
Step 2	
Ratio = 3:2	
So, we must divide the number of moles by 3 and then multiply by 2.	
10 ÷ 3 x 2 = 0.66666mol	(1)
Step 3	
Mass = mol x Mr	
Mass = 0.66666 x 17	(1)
	Total: 3 marks

9. What mass of sodium hydroxide is needed to neutralise 24.5kg of sulfuric acid?

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

Step 1	
98g = 1 mol	
$1g = \frac{1}{98} \text{ mol}$	
$24.5g = \frac{1}{98} \times 24.5$ $24.5g = 0.25$ mols	(1)
Step 2	
Ratio = 1:2	
So, we must multiply the number of moles by 2.	
0.25 x 2 = 0.5 mol	(1)
Step 3	
Mass = mol x Mr	
Mass = 0.5 x 40	
Mass = 20kg or 20000g	(1)
	Total: 3 marks

10. Calculate the mass of calcium oxide that can be obtained by heating 25kg of Calcium carbonate.

$$CaCO_3 \rightarrow CaO + CO_2$$

Step 1	
100g = 1 mol	
$1g = \frac{1}{100} \text{ mol}$	
$25g = \frac{1}{100} \times 25$	
25g = 0.25 mols	(1)
Step 2	
Ratio = 1:1	(1)
Step 3	
Mass = mol x Mr	
Mass = 0.25 x 56	
Mass = 14kg or 14000g	(1)
	Total: 3 marks

11. What mass of carbon dioxide is formed when 7.41g of copper (II) carbonate decomposes on heating?

$$CuCO_3 \rightarrow CuO + CO_2$$

Step 1	
123.5g = 1 mol	
$1g = \frac{1}{123.5} \text{ mol}$	
$7.41g = \frac{1}{123.5} \times 7.41$	(1)
7.41g = 0.06 mols	
Step 2	
Ratio = 1:1	(1)
Step 3	
Mass = mol x Mr	
Mass = 0.06 x 44	(1)
	Total: 3 marks

12. What mass of carbon monoxide is needed to react with 2.08kg of iron oxide?

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

No marks are awarded for balancing equations. This skill should be mastered by now.

Step 1	
160g = 1 mol	
$1g = \frac{1}{160} \text{ mol}$	
$2.08g = \frac{1}{160} \times 2.08$ $2.08g = \frac{13}{1000} \text{ mols}$	(1)
Step 2	
Ratio = 1:3	
So, we must multiply the number of moles by 3.	
$\frac{13}{1000} \times 3 = \frac{39}{1000}$	
1000 1000	(1)
Step 3	
Mass = mol x Mr	
Mass = $\frac{39}{1000}$ x 28	(1)
	Total: 3 marks

13. What mass of chlorine reacts with 20.0g of iron to form iron(III) chloride?

2Fe +
$$3Cl_2 \rightarrow 2FeCl_3$$

Step 1	
56g = 1 mol	
$1g = \frac{1}{56} \text{ mol}$	
$20g = \frac{1}{56} \times 20$ $20g = \frac{5}{14} \text{ mols}$	(1)
Step 2	
Ratio = 2:3	
So, we must divide the number of moles by 2 and then multiply by 3.	
$\frac{5}{14} \text{ mols} \div 2 \times 3 = \frac{15}{28} \text{ mols}$	(1)
Step 3	
Mass = mol x Mr	
Mass = $\frac{15}{28}$ mols x 71	(1)
	Total: 3 marks

14. Hydrazine (N₂H₄) is used as a rocket fuel. It can be made by reacting ammonia with hydrogen peroxide. What mass of ammonia is needed to make 148g of hydrazine?

$$2NH_3 + H_2O_2 \rightarrow N_2H_4 + 2H_2O$$

Step 1	
32g = 1 mol	
$1g = \frac{1}{32} \text{ mol}$	
$148g = \frac{1}{32} \times 148$	(1)
Step 2	
Ratio = 1:2	
So, we must multiply the number of moles by 2.	
4.625 mols x 2 = 9.25	(1)
Step 3	
Mass = mol x Mr	
Mass = 9.25 mols x 17	(1)
	Total: 3 marks

15. Titanium is extracted from titanium chloride as shown. Calculate the mass of sodium needed to react with 126g of titanium chloride.

$$TiCl_4 + 4Na \rightarrow Ti + 4NaCl$$

Step 1	
190g = 1 mol	
$1g = \frac{1}{190} \text{ mol}$	
$126g = \frac{1}{190} \times 126$ $126g = \frac{63}{95} \text{ mols}$	(1)
Step 2	
Ratio = 1:4	
So, we must multiply the number of moles by 4.	
$\frac{63}{95}$ mols x 4 = 2.65	(1)
Step 3	
Mass = mol x Mr	
Mass = 2.65 mols x 23	(1)
	Total: 3 marks

16. Calculate the mass of oxygen needed to react 9.60g of magnesium to form magnesium oxide.

$${ 2 \text{Mg} + O_2 } \rightarrow { 2 \text{MgO} }$$

Step 1	
24g = 1 mol	
$1g = \frac{1}{24} \text{ mol}$	
$9.60g = \frac{1}{24} \times 9.60$ $9.60g = 0.4 \text{ mols}$	(1)
Step 2	
Ratio = 2:1	
So, we must divide the number of moles by 2.	
$0.4 \text{ mols} \div 2 = 0.2 \text{ mol}$	(1)
Step 3	
Mass = mol x Mr	
Mass = 0.2 mols x 32	(1)
	Total: 3 marks

17. What mass of ethanol could burn in 100g of oxygen?

$$2C_2H_5OH + 6O_2 \rightarrow 4CO_2 + 6H_2O$$

Step 1	
32g = 1 mol	
$1g = \frac{1}{32} \text{ mol}$	
$100g = \frac{1}{32} \times 100$ $100g = 3.125 \text{ mols}$	(1)
Step 2	
Ratio = 3:1	
So, we must divide the number of moles by 6 and multiply by 2.	
3.125 mols \div 6 x 2 = $\frac{25}{24}$ mol	(1)
Step 3	
Mass = mol x Mr	
$Mass = \frac{25}{24} \mod x \ 46$	
Mass = 47.91g	(1)
	Total: 3 marks

18. What mass of hydrogen is formed when 2.00g of magnesium reacts with sulphuric acid?

$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$$

Step 1	
24g = 1 mol	
$1g = \frac{1}{24} \text{ mol}$	
$2g = \frac{1}{24} \times 2$ $2g = \frac{1}{12}$ mols	(1)
Step 2	
Ratio = 1:1	(1)
Step 3	
Mass = mol x Mr	
$Mass = \frac{1}{12} \text{ mols x 2}$	
Mass = 0.167g	(1)
	Total: 3 marks

19. What mass of aluminium reacts with 50.0g of chlorine to form aluminium chloride?

$$2AI + 3CI_2 \rightarrow 2AICI_3$$

Step 1	
71g = 1 mol	
$1g = \frac{1}{71} \text{ mol}$	
$50g = \frac{50}{71} \text{ mols}$	(1)
Step 2	
Ratio = 3:2	
So, we must divide the number of moles by 3 and multiply by 2.	
$\frac{50}{71}$ mols ÷ 3 x 2 = $\frac{100}{213}$ mol	(1)
Step 3	
Mass = mol x Mr	
Mass = $\frac{100}{213}$ mol x 27	
Mass = 12.67g	(1)
	Total: 3 marks

